tensor product - определение. Что такое tensor product
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое tensor product - определение

CONCEPT IN LINEAR ALGEBRA, GENERALIZED THROUGHOUT MATHEMATICS
Tensor products; ⊗; Tensor multiplication; Tensor product of vector spaces; Tensor product (vector spaces); Tensor Product; Tensor product representation; The tensor product; Tensor product of linear maps
  • commutative]] (that is, <math>h = \tilde{h} \circ \varphi</math>).
Найдено результатов: 1247
tensor product         
<mathematics> A function of two vector spaces, U and V, which returns the space of linear maps from V's dual to U. Tensor product has natural symmetry in interchange of U and V and it produces an associative "multiplication" on vector spaces. Wrinting * for tensor product, we can map UxV to U*V via: (u,v) maps to that linear map which takes any w in V's dual to u times w's action on v. We call this linear map u*v. One can then show that u * v + u * x = u * (v+x) u * v + t * v = (u+t) * v and hu * v = h(u * v) = u * hv ie, the mapping respects linearity: whence any {bilinear map} from UxV (to wherever) may be factorised via this mapping. This gives us the degree of natural symmetry in swapping U and V. By rolling it up to multilinear maps from products of several vector spaces, we can get to the natural associative "multiplication" on vector spaces. When all the vector spaces are the same, permutation of the factors doesn't change the space and so constitutes an automorphism. These permutation-induced iso-auto-morphisms form a group which is a model of the group of permutations. (1996-09-27)
Tensor product         
In mathematics, the tensor product V \otimes W of two vector spaces and (over the same field) is a vector space to which is associated a bilinear map V\times W \to V\otimes W that maps a pair (v,w),\ v\in V, w\in W to an element of V \otimes W denoted v \otimes w.
Tensor product of modules         
  • right
OPERATION THAT PAIRS A LEFT AND A RIGHT 𝑅‐MODULE INTO AN ABELIAN GROUP
Tensor product of modules over a ring; Exterior bundle; Relative tensor product; Tensor product of abelian groups; Balanced product; Trace map; Tensor product of complexes
In mathematics, the tensor product of modules is a construction that allows arguments about bilinear maps (e.g.
Tensor product (disambiguation)         
WIKIMEDIA DISAMBIGUATION PAGE
Draft:Tensor product (disambiguation); Tensor Product (disambiguation)
Tensor Product refers to one of several related binary operations, typically denoted - \otimes -. Usually, they are associative, unital, and symmetric (up to some appropriate kind of structural equivalence).
Dyadics         
SECOND ORDER TENSOR, WRITTEN IN A NOTATION THAT FITS IN WITH VECTOR ALGEBRA
Dyadic tensor; Dyadic product; Diadic product; Dyad product; Diadic; Double-dot product
In mathematics, specifically multilinear algebra, a dyadic or dyadic tensor is a second order tensor, written in a notation that fits in with vector algebra.
Projective tensor product         
TENSOR PRODUCT DEFINED ON TWO TOPOLOGICAL VECTOR SPACES
User:Mgkrupa/Projective tensor product
The strongest locally convex topological vector space (TVS) topology on X \otimes Y, the tensor product of two locally convex TVSs, making the canonical map \cdot \otimes \cdot : X \times Y \to X \otimes Y (defined by sending (x, y) \in X \times Y to x \otimes y) continuous is called the projective topology or the π-topology. When X \otimes Y is endowed with this topology then it is denoted by X \otimes_{\pi} Y and called the projective tensor product of X and Y.
Injective tensor product         
User:Mgkrupa/Injective tensor product
In mathematics, the injective tensor product of two topological vector spaces (TVSs) was introduced by Alexander Grothendieck and was used by him to define nuclear spaces. An injective tensor product is in general not necessarily complete, so its completion is called the .
Tensor product of algebras         
TENSOR PRODUCT OF ALGEBRAS OVER A FIELD; ITSELF ANOTHER ALGEBRA
Tensor product of R-algebras; Tensor product of rings; Tensor product algebra
In mathematics, the tensor product of two algebras over a commutative ring R is also an R-algebra. This gives the tensor product of algebras.
Tensor product bundle         
VECTOR BUNDLE WHOSE FIBERS ARE TENSOR PRODUCTS OF FIBERS OF TWO VECTOR BUNDLES
Tensor product of line bundles; Tensor product of bundles
In differential geometry, the tensor product of vector bundles E, F (over same space X) is a vector bundle, denoted by E ⊗ F, whose fiber over a point x \in X is the tensor product of vector spaces Ex ⊗ Fx.To construct a tensor-product bundle over a paracompact base, first note the construction is clear for trivial bundles.
Topological tensor product         
TENSOR PRODUCT CONSTRUCTIONS FOR TOPOLOGICAL VECTOR SPACES
Cross norm; Tensor norm
In mathematics, there are usually many different ways to construct a topological tensor product of two topological vector spaces. For Hilbert spaces or nuclear spaces there is a simple well-behaved theory of tensor products (see Tensor product of Hilbert spaces), but for general Banach spaces or locally convex topological vector spaces the theory is notoriously subtle.

Википедия

Tensor product

In mathematics, the tensor product V W {\displaystyle V\otimes W} of two vector spaces V and W (over the same field) is a vector space to which is associated a bilinear map V × W V W {\displaystyle V\times W\to V\otimes W} that maps a pair ( v , w ) ,   v V , w W {\displaystyle (v,w),\ v\in V,w\in W} to an element of V W {\displaystyle V\otimes W} denoted v w . {\displaystyle v\otimes w.}

An element of the form v w {\displaystyle v\otimes w} is called the tensor product of v and w. An element of V W {\displaystyle V\otimes W} is a tensor, and the tensor product of two vectors is sometimes called an elementary tensor or a decomposable tensor. The elementary tensors span V W {\displaystyle V\otimes W} in the sense that every element of V W {\displaystyle V\otimes W} is a sum of elementary tensors. If bases are given for V and W, a basis of V W {\displaystyle V\otimes W} is formed by all tensor products of a basis element of V and a basis element of W.

The tensor product of two vector spaces captures the properties of all bilinear maps in the sense that a bilinear map from V × W {\displaystyle V\times W} into another vector space Z factors uniquely through a linear map V W Z {\displaystyle V\otimes W\to Z} (see Universal property).

Tensor products are used in many application areas, including physics and engineering. For example, in general relativity, the gravitational field is described through the metric tensor, which is a vector field of tensors, one at each point of the space-time manifold, and each belonging to the tensor product with itself of the cotangent space at the point.